If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8d^2+4d=0
a = 8; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·8·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*8}=\frac{-8}{16} =-1/2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*8}=\frac{0}{16} =0 $
| 25/30=5x | | 11-7m=2 | | 9v-4v=40 | | 6n+2+8=2+2n | | 2(5x15)=55 | | 12m-2=2m+56 | | 12d^2-20d=0 | | 1/3x+1/4=5/4 | | 2(3x-8)=-14 | | 3(-6+2)=2m+6 | | 2c=c+1 | | 17x5x=0 | | 39-5x=19 | | 10(2=x)=15(x-1)+5 | | 9b+10=110-b^2 | | 31-2x=21 | | 3k^2+27k=0 | | 1/10=d-1/5 | | 5(4c+9)=3(7c-1) | | (3*g+4)/5=(4*g-8)/4 | | 2(5x+9)=4(6x+10) | | 2a=a+18 | | 105x+180=24x+39 | | s=12s+4 | | 39-4x=19 | | 4y-7=8y-33 | | 64=4a-44 | | 15t-5=-34 | | 3b^2+10=110-b^2 | | 10+9y=-6y-4 | | 5(9s-1)=2(11s+9) | | 7=4b+3-2b |